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for the 2D experiment. The separation of the CSA powder
patterns in a 2D spectrum removes the overlap that is often severe
in the one-dimensional spectrum of a static sample, revealing the
useful CSA information.
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Androgens are formed by testicular cytochrome P450 CYP17!
via an initial 17a-hydroxylation of progesterone (P) or pregne-
nolone followed by the cleavage of the C-17 side chain.? Although
the cleavage reaction observed in testes has been shown to utilize
NADPH and molecular oxygen,’ a definitive mechanism for the
reaction has evaded investigators. In this communication we report
the NADPH-dependent formation of 17-O-acetyltestosterone (AT)
upon incubation of P with microsomes and purified CYP17 from
perinatal pig testes. The formation of AT suggests that this
enzyme has the capacity to catalyze the Baeyer—Villiger rear-
rangement via a ferric heme peroxy substrate intermediate.

The formation of AT, 17a-hydroxyprogesterone (17a-OHP),
and androstenedione (A) was analyzed by HPLC with a radio-flow
detector. The products were eluted from a 5-um ODS column
isocratically with 30% methanol, 25% acetonitrile, and 45% water
at a flow rate of 1 mL/min# AT was identified by comigration
with authentic standard (retention time 73 min) and confirmed
by GCMS. Under electron impact ionization (70 eV; source
temperature 150 °C), the parent compound had a molecular
weight of m/z 330 with a major fragment corresponding to the
loss of acetate (M*/-60). No ion corresponding to the loss of
water (M*/-18) was observed.

In microsomes the formation rate of AT was 1 pmol/min/mg
of protein as compared to 305 and 45 pmol/min/mg for 17a-OHP
and A, respectively, while the activity associated with the purified
enzyme was 1.6, 447, and 326 pmol/min/nmol of P450 for AT,
17a-OHP, and A, respectively, under the conditions described in
ref 4. AT formation was NADPH-dependent in both systems.

If AT is formed by CYP17, then it and 17«-OHP should arise
from the same CYP17-progesterone complex and their rates of
formation should be equally sensitive to competitive inhibitors.
Ketoconazole, a well-characterized competitive inhibitor of
CYP17,° and pregnenolone, the cosubstrate for the reaction, did
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Figure 1. Inhibition of CYP17 activities in microsomes from pig testes
by ketoconazole. The effect of ketoconazole upon the formation of AT
(&) and 17a-OHP (©) was determined in 10-min incubations at 37 °C
containing 1.5 mg/mL of protein and 50 uM [*H]progesterone.
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Figure 2. Proposed mechanism in the formation of 17-O-acetyltesto-
sterone via the Baeyer—Villiger rearrangement.

not differentially inhibit the formation of either product. The ICs,
values, associated with ketoconazole inhibition were 1.60 £ 0.74
and 2.27 £ 0.20 uM, respectively, for AT and 17a-OHP (Figure
1),6 and the apparent X; values associated with pregnenolone
inhibition (determined by the method of Dixon) were 5.0 £ 3.5
uM for AT and 9.6 £ 4.6 uM for 17a-OHP. The formation of
both products by purified CYP17 was inhibited 48 and 51% by
5 uM ketoconazole, respectively. These data strongly suggest that
AT is formed from the same enzyme—substrate complex as 17a-
OHP.

The insertion of an oxygen in a carbon—carbon bond is most
readily accomplished via rearrangement of a peroxy intermediate.
This well-characterized chemical reaction is known as the
Baeyer—Villiger rearrangement.” The rearrangement of the C-20
ferric peroxide of progesterone via the Baeyer—Villiger rear-
rangement would result in the formation of AT (Figure 2).
Precedent for this type of reaction being catalyzed by a cytochrome
P450 was recently shown in a report by Fisher and co-workers.?
They reported evidence that lanosterol 14a-demethylase catalyzes
the formation of 14a-(formyloxy)lanost-8-en-38-ol from lanosterol
and concluded that this could only arise via the Baeyer-Villiger
rearrangement.

Since AT has not yet been shown to be an intermediate in A
formation from P, it does not directly implicate this mechanism
in androgen formation by CYP17. It is possible that this is a
process that occurs infrequently (leakage). Reports in the lit-
erature, primarily by Akhtar and co-workers,? propose the in-

(6) ICyo values are the mean # standard deviation from the separate
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equation: % of control activity = 100(1 — (S/S + ICy). All r values were
greater than 0.97.
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volvement of a peroxy intermediate in C-17 side-chain cleavage;
however, rearrangement to androgen via the Baeyer—Villiger
reaction was not considered an option. We feel that, in light of
the above finding, this rearrangement must be considered a viable
option. It is consistent with the studies of Akhtar in which 0
was incorporated into acetate and is also consistent with the
formation of the A!6 steroids, which are formed by loss of the 173
side chain and the 16a-hydrogen.’
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We report that a Na* salt induces intramolecular electron
transfer (ET) between the two iron redox centers of the fulval-
ene-bridged diradical 1 upon ligand exchange and that this ET
can be switched to intermolecular ET by controlling the donicity
of the incoming ligand. This special salt effect! is shown here
to bear a synthetic potential in transition metal chemistry due to
the facility of these elements to change their redox states.

The reaction of the bis 19-electron complex [Fely(u,,n'0-
Fv)(n°-C4Hg),] (1)° (Fv = fulvalene)® at 20 °C with 1 atm of
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CO in THF in the absence of Na*PF4~ leads as expected to the
replacement of both benzene ligands by six CO’s, giving the slightly
unstable new red diamagnetic complex 27 which indicates elec-
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